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Half-vortices have been recently shown to be the elementary topological defects supported by a spinor cavity
exciton-polariton condensates with spin-anisotropic interactions �Y. G. Rubo, Phys. Rev. Lett. 99, 106401
�2007��. A half-vortex is composed by an integer vortex for one circular component of the condensate, whereas
the other component remains static. We analyze theoretically the effect of the splitting between TE and TM
polarized eigen modes on the structure of the vortices in this system. For TE and TM modes, the polarization
states depend on the direction of propagation of particles and impose some well-defined phase relation between
the two circular components. As a result elementary topogical defects in this system are no more half-vortices
but integer vortices for both circular components of the condensate. The intrinsic lifetime of half-vortices is
given and the texture of a few vortex states is analyzed.
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I. INTRODUCTION

Interactions between quantum particles lie behind a num-
ber of intriguing phenomena in the field of condensed-matter
physics. Being treated within mean-field approximation, for
a system of interacting bosons they result in a nonlinear term
in the Gross-Pitaevskii equation, which is currently routinely
used for the description of dynamics of Bose-Einstein Con-
densates �BECs� of cold atoms.1 A similar equation, known
as nonlinear Schrödinger equation, is widely used in nonlin-
ear optics for description of such phenomena as self-focusing
of laser beams and propagation of solitons.2

The fields of BEC and nonlinear optics meet each other in
the context of planar semiconductor microcavities: the me-
soscopic objects designed to enhance the light-matter inter-
action. A microcavity consists of a pair of distributed Bragg
mirrors confining an electromagnetic mode and one or sev-
eral quantum wells �QWs� with an excitonic resonance,
which are placed at the antinodes of the electric field. In
strong coupling regime, where coherent exciton-photon in-
teraction overcomes the damping caused by the finite life-
time of excitons and cavity photons, a new type of elemen-
tary excitations, called exciton polaritons �or cavity
polariton�, appears in the system. The polaritons are a mix-
ture of material excitations �excitons� with light �photons�.

The hybrid nature of polaritons gives them a set of pecu-
liar properties. First, at relatively small densities, polaritons
exhibit bosonic properties.3 Second, due to the presence of a
photonic component, the effective mass of the polaritons is
extremely small �10−4–10−5 of the free electron mass� while
the presence of an excitonic component makes possible effi-
cient polariton-polariton and polariton-phonon interactions.
These properties make possible polariton Bose condensation4

suggested more than 10 years ago, up to high
temperatures.5,6 The simulations have shown that relaxation
of polaritons can become faster than their radiative lifetime,
allowing the formation of a quasiequilibrium polariton gas.

These predictions have been confirmed by the recent obser-
vation of polariton condensation7–14 and the demonstration of
the thermodynamic regime13,14 where the behavior of the po-
lariton gas is well described by its thermodynamic variables
�temperature and chemical potential�. The next step after the
observation of the condensation itself is to study the dynami-
cal properties and the specificities of polariton condensates.
One of the important properties is superfluidity. The phase
transition expected for two-dimensional polaritons is rather a
Berezinskii-Kosterlitz-Thouless �BKT� transition toward a
superfluid state15 and not the BEC. Such a phase transition
has not been immediately observed in CdTe-based and GaN-
based structures, because of the presence of a structural dis-
order, which has led to the formation of an Anderson Glass
phase16 or to the condensation in a single in-plane potential
trap.17 Only in a cleaner GaAs-based sample some signatures
of BKT phase transition have been reported.18 If this obser-
vation is confirmed, it would rule out the claims that no
superfluid behavior can be achieved in a system of particles
showing a finite lifetime.19,20 Another way to excite a super-
fluid flow of polaritons is to properly design a resonant ex-
citation experiment, as described theoretically21,22 and re-
cently evidenced experimentally.23 In this framework the
study of fundamental properties of polariton vortices is of a
strong interest. On one side, the BKT transition between nor-
mal and superfluid states in two-dimensional system is
closely connected with the formation of topological defects
�vortex-antivortex pairs�. On the other side, the recent
growth of the experimental activity devoted to cavity polar-
iton condensates opened a race to the observation of exotic
phenomena. Observation of a vortex pinned to a defect in a
disordered cavity has been reported,24 whereas the formation
of a lattice of vortices in a potential trap has been predicted
theoretically in the scope of a Ginzburg-Landau model.25 In
these two works the peculiar spin structure of polaritons was
not taken into account. In fact, only one theoretical work did
study vortex states in homogeneous spinor polariton
condensates.26 In this work Rubo shows that elementary po-
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lariton vortex states are the so-called “half-vortices.” They
are characterized by a half-quantum change in the phase of
the condensate, i.e., the phase of the wave function is
changed by �� after encircling the point of singularity. This
analysis however was not considering the facts that polariton
eigen states in a microcavity are normally TE or TM
polarized,27 with a finite-energy splitting between these two
states �TE-TM splitting�.

In the present work we therefore consider the impact of
the TE-TM splitting on polariton vortices. We first show that
using the basis of circularly polarized states �contrary to the
basis of linearly polarized states used by Rubo26� allows to
describe a half-vortex as one vortex for one circular compo-
nent, whereas the other circular component remains immo-
bile. We then show that the TE-TM splitting couples the
half-vortices of opposite circularity, which cease to be the
stationary solutions of the spinor Gross-Pitaevskii equations.
The elementary �stationary� excitation of the condensate with
the TE-TM splitting is composed by one vortex of each cir-
cular component. This result does not mean that the half-
vortices cannot be observed experimentally, but rather that
they should decay in time and therefore should not be used
for the calculation of the critical temperature of the BKT
phase transition. The paper is organized as follows. In the
second section we discuss in detail the spin structure of cav-
ity polaritons. In the third section the polarization structure
of polariton vortices is analyzed. Results and discussions are
presented in the fourth section. The fifth section draws the
main conclusions.

II. SPIN STRUCTURE OF CAVITY POLARITONS

An important peculiarity of cavity polaritons is linked
with their spin structure. Like other bosons, polaritons ex-
hibit an integer spin, inherited from spins of excitons and
photons. In QWs the lowest energy level of a heavy hole
�having a spin Sz=3 /2� lies typically lower than any light-
hole level �Sz=1 /2� and thus the entire exciton spin in a QW
has projections Sz= �2, �1 on the structure growth axis.
The states with Sz= �2 are not coupled to light and thus do
not participate in polariton formation. As they are split off in
energy, normally they can be neglected while considering
polariton dynamics.28 On the contrary, states with Sz= �1
form the optically active polariton doublet and can be created
by �+ and �− circularly polarized light, respectively. Thus,
from the formal point of view, the spin structure of cavity
polaritons is analogical to spin structure of the electrons
�both being two-level systems�, which permits to introduce
the concept of a pseudospin vector S� for the description of
their polarization dynamics.29 The latter is determined as the
coefficient of the decomposition of the 2�2 spin-density
matrix � of polaritons on a set consisting of the unity matrix
I and three Pauli matrices �x,y,z,

� =
N

2
I + S� · �� , �1�

where N is the total number of particles. The orientation of
the pseudospin completely determines the polarization of the

emission from a microcavity. According to a generally ac-
cepted convention, orientation of the pseudospin along z axis
corresponds to circular polarized emission while pseudospin
lying in x-y plane corresponds to linear polarized emission.

The spin dynamics of cavity polaritons has become a field
of intense research since 2002.30 It is governed by two fac-
tors. First, at k� �0 there is an effective in-plane magnetic
field which results in the pseudospin rotation manifesting
itself in the oscillations of the polarization degree of photo-
emission in the time domain. It is well known that due to the
long-range exchange interaction between the electron and
hole, for excitons having nonzero in-plane wave vectors, the
states with dipole moment oriented along and perpendicular
to the wave vector are slightly different in energy.31 In mi-
crocavities, the TE-TM splitting of polariton states is greatly
amplified due to the exciton coupling with the cavity mode,
which is also split in TE and TM polarizations.27 An impor-
tant feature of the effective magnetic field generated by the
TE-TM splitting is the dependence of its direction on the
direction of the wave vector: it is oriented in the plane of the
microcavity and makes a double angle with the x axis in the
reciprocal space,

�� ef f�k� � ex cos�2	� + ey sin�2	� . �2�

This peculiar link between the orientation of the effective
magnetic field and polariton wave vector leads to remarkable
effects in the real-space dynamics of the polarization in
quantum microcavities, including the optical spin Hall
effect,32 possible formation of polarization patterns,33 and
creation of polarization vortices.34

Second, polariton-polariton interactions are known to be
spin anisotropic. Since the exchange interaction plays a ma-
jor role, the interaction of polaritons with parallel spin pro-
jections on the structure growth axis is much stronger than
that of polaritons with antiparallel spin projections.35 This
leads to a mixing of linearly polarized polariton states, mani-
festing itself in remarkable nonlinear effects in polariton spin
relaxation, such as self-induced Larmor precession and in-
version of linear polarization upon scattering.36

In the domain of polariton BEC, spin properties of cavity
polaritons play a major role. It was argued that under unpo-
larized nonresonant pump the transition to phase-coherent
states should be accompanied by spontaneous appearance of
a linear polarization in the emission from the ground state.
Consequently, linear polarization can be considered as an
experimentally measurable order parameter of the polariton
BEC.37

It is well known that the BKT transition between normal
and superfluid states in two-dimensional systems is closely
connected with the formation of the topological defects38

�vortex-antivortex pairs�. It is thus of a crucial importance to
understand the structure and polarization properties of vorti-
ces in the homogeneous polariton condensates.

III. POLARIZATION VORTICES IN SPINOR POLARITON
CONDENSATES

To the best of our knowledge, up to the present time, there
exists only one theoretical work regarding vortices in the
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context of the spinor polariton condensation.26 In this pio-
neer paper the polarization structure of the polariton vortices
was analyzed and the existence of peculiar half-vortices was
predicted39 and those latter have been observed very
recently.40 It was shown that contrary to the case of a normal
vortex in scalar superfluid, the particle density differs from
zero in the center of a half-vortex. Besides, these objects
have been predicted to possess a peculiar spatial dependence
of the polarization: it is circular in the center of the core and
becomes linear at large distances from it. The energy re-
quired to create a half-vortex is twice smaller than the one
required to create a normal vortex because only one half of
the total fluid mass is rotating. As a result, the existence of
half-vortices as stationary stable states divides by 2 the criti-
cal temperature of the BKT phase transition as discussed in
Ref. 26.

However, the effects of the in-plane effective magnetic
fields of various nature, in particular, of the TE-TM splitting,
on the structure of the polarization vortices was neglected in
this seminal work. As we shall see below, these fields can
have drastic effects on the structure of polarization vortices.
Besides, in our opinion, the choice of the basis of linear
polarizations used in Ref. 26 hindered the clear physical un-
derstanding of the nature of the half-vortices. In the present
paper we revise and extend the results of Rubo, accounting
for nonzero TE-TM splitting of a polariton doublet using the
basis of circular polarizations, which makes the obtained re-
sults much more transparent.

The Hamiltonian of an interacting polariton system writ-
ten in the basis of circular polarized states reads

Ĥ = Ĥ0 + Ĥint

=� �
� †T̂�− i���
� − ��
� †
� ��dr

+� �1

2
��
+�4 + �
−�4� + 2�
+�2�
−�2	dr , �3�

where 
� are the field operators for right and left circular
polarized polaritons, 
� = �
+ ,
−�T, the coefficients 1 and 2
describe the interaction between the polaritons with same
and opposite circular polarizations,41 and � is the chemical
potential determined by the condensate density at infinity.

The parameters we use are connected with those introduced
in Ref. 26 in the following way:

U0 = 1, �4�

U1 = �1 − 2�/2. �5�

The tensor of the kinetic energy reads

T̂�− i��� = 
 Ĥ0�− i��� ĤTE-TM�− i���

ĤTE-TM
† �− i��� Ĥ0�− i���

� , �6�

where the diagonal terms Ĥ0 describe the kinetic energy of

lower cavity polaritons and the off-diagonal terms ĤTE-TM
correspond to the longitudinal-transverse splitting, mixing
opposite circular polarized components. In our further con-
siderations we will adopt the effective-mass approximation,

Ĥ0 = −
�2

2m�
�2, �7�

ĤTE-TM = �
 �

�y
+ i

�

�x
�2

, �8�

where m� is the effective mass of cavity polaritons. Equation
�8� is the simplest form of the Hamiltonian providing the
correct symmetry of the effective magnetic field given by
expression �2�.31,42 The dependence of the absolute value of
this field on the wave number is taken to be quadratic, which
corresponds well to the effective-mass approximation we are
using in the current paper. � is a constant, characterizing the
strength of the TE-TM splitting which can be expressed via
the longitudinal and transverse polariton effective masses ml
and mt,

� =
�2

4

 1

ml
−

1

mt
� . �9�

Within the framework of mean-field approximation at
T=0, the dynamics of the spinor polariton superfluid can be
completely described by a set of 2 coupled Gross-Pitaevskii
equations,43 which in the basis of circular polarized states
reads

i�
�

�t


+


−
� =�−

�2

2m�
�2 − � + 1�
+�2 + 2�
−�2 �
 �

�y
+ i

�

�x
�2

�
 �

�y
− i

�

�x
�2

−
�2

2m�
�2 − � + 1�
−�2 + 2�
+�2

+


−
� , �10�

where the chemical potential is �= �1+2�n� /2 with n�= �
+����2+ �
−����2 being the condensate density far away from the
vortex core. Rescaling the variables 
�→ �� / �1+2��1/2
�, r→ ��2 / �m����1/2r, and t→ �� /��t, one can represent the
system �10� in the following dimensionless form:
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i
�

�t


+


−
� =�−

1

2
�2 − 1 + A1�
+�2 + A2�
−�2 �
 �

�y
+ i

�

�x
�2

�
 �

�y
− i

�

�x
�2

−
1

2
�2 − 1 + A1�
−�2 + A2�
+�2

+


−
� , �11�

where A1,2=1,2 / �1+2� and �=�m� /�2.
Let us start our analysis from the simplest case, where the

TE-TM splitting can be neglected, �=0. This case has been
considered already in Ref. 26 but we feel that it will be
instructive to re-examine it using the basis of the circular
polarized states because the final result is more transparent.

Equations �11� allow a time-independent solution, which
can be represented in the following form:


� = 

+�r,��

−�r,��

� = 
 f+�r�eil+�

f−�r�eil−� � , �12�

where �r ,�� are the polar coordinates. Due to the conserva-
tion of the z component of the spin by polariton-polariton
interactions, the winding numbers of the two circular
polarized components l� are independent. Rewriting
Eq. �12� in the basis of linear polarized components

�=2−1/2�
X� i
Y�, one easily obtains the relation between
our winding numbers l� and those of Ref. 26,

k =
l+ − l−

2
, �13�

m =
l+ + l−

2
. �14�

The situation describing a half-vortex corresponds to the
case where for one circular polarized component the winding
number is zero �say l+=0� while for the other one it is
�l−=+1�. Radial wave functions f� satisfy the following set
of equations:

f+� + f+� + 
2 − 2A1f+
2 − 2A2f−

2 −
l+
2

r2� f+ = 0, �15�

f−� + f−� + 
2 − 2A1f−
2 − 2A2f+

2 −
l−
2

r2� f− = 0, �16�

which corresponds to Eq. �10� of Ref. 26, if one puts
f�=2−1/2�f �g�.

In the simplest case, when the circular polarized compo-
nents do not interact �A2=0�, the half-vortex with l+=0 and
l−=1 corresponds to a homogeneous distribution of �+ com-
ponent and a simple vortex in �−. Clear enough, in the center
of such a half-vortex the density is nonzero �due to the �+
component� and polarization is circular since the density of
the �− component is zero in the center of the vortex. Moving
from the center of the vortex changes polarization from cir-
cular to linear in a continuous manner.

Now let us consider a more interesting case where ��0.
The terms associated with the TE-TM splitting rewritten in
polar coordinates read


 �

�y
� i

�

�x
�2

= e�2i�
−
�2

�r2 � 2ir−1 �2

�r � �
� 2ir−2 �

��

+ r−1 �

�r
+ r−2 �2

��2� . �17�

The nonzero coupling between the circular polarized
components leads to the mutual dependence of their winding
numbers. The only cylindrically symmetric solutions of Eq.
�11� have the following form:



+�r,��

−�r,��

� = eil�
 f+�r�
e2i�f−�r�

� , �18�

which means that necessarily

l+ = l = l− − 2. �19�

In terms of Ref. 26 this state corresponds to a winding
number k=−1. Thus, one can conclude that the presence of
the TE-TM splitting does not allow the half-vortex as a sta-
tionary solution anymore.

The radial functions describing the vortex core can be
found from the following system of coupled equations,
which can be obtained by putting expressions �17� and �18�
into Eq. �11�,

1

2

 d2

dr2 +
1

r

d

dr
� f+ − 
A1f+

2 + A2f−
2 − 1 +

l2

2r2� f+

+ �� d2

dr2 +
2l + 3

r

d

dr
+

l�l + 2�
r2 	 f− = 0, �20�

1

2

 d2

dr2 +
1

r

d

dr
� f− − �A1f−

2 + A2f+
2 − 1 +

�l + 2�2

2r2 	 f−

+ �� d2

dr2 −
2l + 1

r

d

dr
+

l�l + 2�
r2 	 f− = 0. �21�

The above equations are quite complicated and only allow
numerical solution.

IV. RESULTS AND DISCUSSION

In this section we present numerical results for radial
functions f� and the associated vortex polarization textures.
To determine which configuration will have the lowest en-
ergy, let us remind that without the TE-TM splitting, the
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elastic energy of the vortex in a spinor condensate can be
estimated as26

Eel =
�s

2
� ����+�2 + ���−�2�dr � ��s�l+

2 + l−
2�ln
R

a
�

�22�

where �s=�2n� /m� is the rigidity or stiffness of the conden-
sate, a=� / �m���1/2 is the coherence length or the vortex core
radius, R is the size of the system, and �� are the phases of
the circular polarized components. From the above formula it
follows that if l+= l−−2, the minimal energy corresponds to a
vortex �l+ , l−�= �−1,+1�. We thus start our analysis from such
a situation.

In this case the radial functions corresponding to the op-
posite circular polarizations found from numerical solution
of Eqs. �20� and �21� with l=−1 are identical and can be
satisfactory approximated by the following function plotted
at Fig. 1:

f��r� �
r

�r2 + 1
. �23�

One should make a remark at this point. Indeed, if f+= f− is a
solution of Eqs. �20� and �21�, this is also the case for
f+=−f− but in such a situation the pseudospin will point in
the opposite direction with respect to the first case. We will
talk again about this in the next section.

As f+= f−, the polarization of the system is always linear,
which makes the z component of the pseudospin vanish:
Sz=0. The pseudospin lies in the plane and is at any point
aligned with the TE-TM effective field. The orientation of
the TE-TM effective field depends on the wave-vector orien-
tation, which, in turn, depends on the position of the particles
with respect to the core of the vortex. The angular depen-
dence both in reciprocal and real space is given by the for-
mula �2�, which shows that the orientation of the effective
field varies as two times the polar angle �. The resulting
polarization pattern is one of a simple �with only one wind-
ing number� vortex with winding number 2, as it is shown in
Fig. 2. If one investigates the f+=−f− solution, the pseu-

dospin will be totally symmetric and opposed to the TE-TM
field, which is not only costly in terms of energy but also
unstable to any perturbation.

Let us now try to understand qualitatively the way the
TE-TM splitting would affect a half-vortex state, which
could be created, for instance, by some external means. At
t=0, �− particles are almost homogeneously covering space
and immobile. They are not affected by the TE-TM splitting
which is zero at k� =0. �+ particles are rotating. The pseudo-
spin in the nonzero wave-vector states is mostly aligned
along z, perpendicular to the TE-TM field which is in the
plane. The pseudospin therefore starts to rotate, demonstrat-
ing that the half-vortex is not stationary. The speed of rota-
tion is large close to the core where particles rotate fast and
where the TE-TM splitting is large, whereas the rotation is
slower and slower going away from the center. For each
radius, the situation is reminiscent of the one happening in
the optical spin Hall effect.32 The density of �+ and �− par-
ticles is locally modified, which should provoke a drift of
particles perpendicularly to the vortex motion and probably,
a destruction of the vortex. The lifetime � of such a transient
state is therefore linked with the value of the TE-TM split-
ting in the core region. We propose an estimation based on
the strength of the energy splitting � seen by particles mov-
ing at the core radius �=� /�m�� characterized by a wave
vector k=1 /�,

� =
��2

�
. �24�

This value can strongly depend on the type of structure,
on the value of detuning, etc. The typical values which can
be expected, however, lie between ten and a few hundreds of
picoseconds. These times are comparable to the typical co-
herence times which have been measured for polariton con-
densates. We conclude that the half-vortices could be experi-
mentally observed both in resonant and nonresonant
experiments. They are however, intrinsically transient states
with a lifetime probably limited by the TE-TM splitting

FIG. 1. �Color online� The exact numerical solution for radial
function of �−1,1� vortex �dashed red line� together with the fitting
function �solid blue line�. The parameter values are �=−1 /78,
A1=10 /9, and A2=−1 /9

FIG. 2. �Color online� Pseudospin �Sx ,Sy� vector field for
�−1,+1� configuration. This pattern is known to be the one of a
simple vortex with winding number 2. The pseudospin is aligned
with the TE-TM effective magnetic field.
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value. Thus they should not be considered, in principle, in a
rigorous calculation of the BKT critical temperature.

The vortex �−1,+1� can be considered as a bound state of
two half-vortices, �−1,0� and �0,+1�. As it was shown in
Ref. 26, without TE-TM splitting the interaction energy of a
pair of vortices �l1+ , l1−� and �l2+ , l2−� placed at distance d
from each other reads

Eint � 2��s�k1k2 + m1m2�ln�a/d� = ��s�l1+l2+

+ l1−l2−�ln�a/d� . �25�

According to this formula, the half-vortices �−1,0� and
�0,+1� do not interact and the corresponding vortex pair is
unbound. Let us re-examine the �−1,+1� case while adding
the distance d between �+ and �− vortices along the
x axis. One has to write the associated wave function in
Cartesian coordinates with �23�, r=�x2+y2, and
��=arctan�y /x�+�H�−x� �H is the Heaviside function�,



+�x + d,y�

−�x − d,y�

� = 
 f+�x + d,y�eil+�+�x+d,y�

f−�x − d,y�eil−�−�x−d,y� � . �26�

The corresponding pseudospin configuration is shown in
Fig. 3 for d=5 and the pattern compared with one of Fig. 2
shows that as d increases, the pseudospin becomes less and
less aligned with the TE-TM field and the energy should
consequently increase. The normalized TE-TM energy part
of the polariton condensate reads

ETE-TM = �s�� �
+
�
 �

�y
+ i

�

�x
�2


− + 
−
�
 �

�y
− i

�

�x
�2


+	dr .

�27�

The numerical computation of ETE-TM as a function of d is
shown in Fig. 4. One can see that the energy increases loga-
rithmically with d and that the lowest energy state is, as
expected, the one with d=0, where the pseudospin is aligned
with the effective field. Thus the TE-TM splitting makes
�−1,0� and �0,+1� vortices interact and collapse on each
other to form a �−1,+1� vortex. Let us remark that for the
f+=−f− solution, the opposite behavior will be observed and

the energy will decrease when vortices move away from
each other. For d=0 and a system of size �R2, the TE-TM
and the kinetic energy read

Ekin = �s
�

2
�R2�R2 − 2�

�1 + R2�2 + 2 ln�1 + R2�	 , �28�

ETE-TM = 2�Ekin, �29�

which with Eq. �9�, m�−1=2−1�mt
−1+ml

−1� and the definitions
of � and �s give Ec+ETE-TM=Ec

�, where Ec
� is the kinetic

energy associated with the new rigidity constant
�s

�=n��2 /mt. One concludes, as it could be expected, that the
TE-TM effective magnetic field switches the effective mass
m� to the TE polarized particles mass mt.

44

Finally we will say a word about �0,+2� and �+1,+3�
configurations that, if they are not energetically favorable,
exhibit interesting pseudospin �polarization� patterns. One
can note, by the way, that these two states are totally sym-
metric respectively to �−2,0� and �−3,−1�. In these cases
radial functions are no more identical for the two compo-

FIG. 3. �Color online� Pseudospin �Sx ,Sy� vector field for a
separation d=5 of the �+ and �− vortices along the x axis.

FIG. 4. �Color online� TE-TM normalized energy part as a func-
tion of the separation d in units of �, the lowest energy is reached
for d=0.
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FIG. 5. �Color online� Left column is �0,+2� and right column
is �+1,+3� configuration. The top line shows radial functions with a
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�Sx�x ,y� ,Sy�x ,y�� vector fields �white arrows� over �c=2Sz�x ,y�
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nents, which will introduce a nonzero circular polarization
close to the vortex core. Numerically calculated radial func-
tions are plotted in the upper part of Fig. 5 and Sz�x ,y� func-
tions as the background of �Sx ,Sy� vector fields in the lower
part. One can remark that the latter vector fields are exactly
the same as the one in Fig. 2. Indeed, this configuration is
fixed by the condition in Eq. �19�. The �0,+2� state is pecu-
liar, so far as there is no vortex for �+. Nevertheless, the
corresponding radial function is not constant as expected.
Indeed, the interaction between circular components implies
a small depletion around the center of the system, observed
as a minimum at r=0. The polarization becomes more and
more circular while approaching r=0. In the �+1,+3� con-
figuration, one has a vortex for each component and the
pseudospin Sz component exhibits a maximum before reach-
ing r=0 which corresponds to a ring around the vortex core
with the maximum of circular polarization degree at about
r=0.6.

V. CONCLUSIONS

In conclusion, we analyzed the impact of the TE-TM
splitting on vortices in spinor polariton condensates. We have

shown that this splitting induces a qualitative change in the
nature of the stationary vortex state supported by a polariton
condensate. The half-vortices are no more stationary solu-
tions of the spinor Gross-Pitaevskii equations and should not
affect the critical temperature of the BKT phase transition.
Their lifetime is of the order of ten to a few hundreds of
picoseconds, limited by the TE-TM splitting value. However,
they can, in principle, be observed experimentally. The stable
vortex having the smallest energy is the state �−1,+1� �in the
circular basis�, whose polarization pattern follows the one
implied by the peculiar TE-TM symmetry. Polarization tex-
tures of other vortex states ��0,+2� and �+1,+3�� have also
been analyzed.
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